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Abstract. The production of topological defects during a quench in a φ4 model is investigated. The influence
of a spatially correlated noise on defect production in two and three dimensions is demonstrated.

PACS. 11.27.+d Extended classical solutions; cosmic strings, domain walls, texture – 05.70.Fh Phase
transitions: general studies – 67.40.Vs Vortices and turbulence

1 Introduction

Recently, much interest has been focused on the formation
of topological defects in condensed matter systems [1]. In
this context, the most interesting is the creation of vortices
during the transition from normal to superfluid phases
of helium-4 and helium-3, and also the punching of the
superconducting layers by magnetic flux tubes. The de-
scription of a continuous phase transition is particularly
simple in the framework of the Landau-Ginzburg theory.
An indispensable part of the description of a symmetry-
breaking transition is an external noise. This work exam-
ines a dynamic transition in a φ4 model in the presence of
spatially correlated noise. Noises of this type are present
in the description of a thermal bath of quasiparticles in
superfluids [2].

The complete φ4 model contains, apart from the dis-
sipative term, also the inertia force term:

∂2
t φa(t,x) + γ∂tφ

a(t,x) =

∆φa(t,x) + εφa(t,x) − (φbφb)φa(t,x), (1)

where γ denotes a dissipation constant and ∆ is the
Laplacian operator. The indices a, b enumerate order pa-
rameters in the model. However, in most condensed matter
systems the dissipative term prevails and therefore half of
the modes of this system are almost unobservable in prac-
tice. These unnoticeable modes can be removed from the
description by neglecting the second-order inertia term,
so that condensed matter systems can be described by a
much simpler overdamped (first-order) φ4 model:

γ∂tφ
a(t,x) = ∆φa(t,x) + εφa(t,x) − (φbφb)φa(t,x). (2)

The crucial characteristic of this model is provided by the
shape of the potential. Depending on the sign of the pa-
rameter ε the system contains one or more ground states.
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This feature allows one to model the phase transition in
the system.

At non-zero temperatures, the system is randomly
forced by thermal fluctuations. This situation has a simple
mechanical analogy, which is a Brownian motion.

The erratic motion of a Brownian particle is due to col-
lisions with the molecules of the fluid in which it moves.
These collisions allow an exchange of the energy between
the fluid and the Brownian particle. If the Brownian par-
ticle is much more massive than the molecules of the fluid
then the influence of the molecules on the particle can be
approximated by a Gaussian noise ηG(t):

mẍ(t) + γẋ(t) = ηG(t), (3)

where x(t) is the position of the Brownian particle. The
generalization of Brownian motion theory to the random
motion of a particle which is not necessarily heavier than
the molecules of the fluid was proposed by Kubo [3]. In this
case the time scale of the molecular motion is no longer
much shorter than that of the motion of the particle under
observation, so that the random force η(t) can not be of
Gaussian type. In addition, if we consider a stationary
process we have to abandon the assumption of a constant
friction and to introduce generally a frequency-dependent
friction

mẍ(t) +
∫ t

t0

dt′γ(t − t′)ẋ(t′) = η(t). (4)

In the same way non-gaussian noise can be introduced for
an overdamped φ4 model. In next section we consider an
overdamped and retarded Landau-Ginzburg model which
is defined by an integro-differential equation.
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2 Defect production

In d spatial dimensions an overdamped and retarded O(d)
symmetric system is described by the equation∫ t

t0

dt′
∫

ddx′γ(t, t′;x− x′)∂t′φ
a(t′,x′) =

∆φa(t,x) + ε(t)φa(t,x) − (φbφb)φa(t,x) + ηa(t,x), (5)

where ηa(t,x) represents a noise which disturbs the sys-
tem. We assume that the number of real scalar fields in the
model is identical to a number of spatial dimensions i.e.
a = 1, 2, ..., d. This assumption guarantees the existence
of topological solutions in the model. Time dependence of
the parameter ε allows for modelling a phase transition in
the system. This dependence of ε on time is a consequence
of change of the temperature or pressure in the system. A
detailed analysis shows that ε is a function of the relative
temperature ε ∼ (Tc − T )/Tc. The dependence on time
enters into this function via time dependence of the tem-
perature of the system T (t) or via time dependence of the
critical temperature Tc(t) which is a consequence of the
pressure jump. After application of the Fourier transfor-
mation φ(t,x) =

∫
ddxeikxφ̃(t,k), the linearized equation

of motion simplify to the set of equations

(2π)d

∫ t

t0

dt′γ̃(t, t′;k)∂t′ φ̃
a(t′,k) =

(−k2 + ε(t))φ̃a(t,k) + η̃a(t,k). (6)

We assume that the system is driven by a spatially corre-
lated isotropic noise

〈η̃a∗(t,k)η̃b(t′,k′)〉 =
1
β

W̃ (k)δ(t − t′)δ(d)(k − k′)δab,

(7)

where W̃ (k) = W̃ (|k|) and 〈...〉 denotes an average over
realizations of the noise. The amplitude of the noise is
connected with the temperature of the thermal bath. Al-
though the temperature of the system changes during the
transition, the most important for the formation of the
kink network is the noise amplitude at the moment when
the system loses its capacity to respond to changes of
external parameters i.e. the noise amplitude at freeze-in
time β ≡ βfreeze-in. The noise correlator and the friction
in the system are related by the fluctuation-dissipation
theorem [3]

γ̃(t, t′;k) =
1
2π

W̃ (|k|)δ(t − t′),

where the temperature is absorbed in the noise correlator
amplitude. In this setting, this relation ensures that the
system comes to thermal equilibrium. The general solution
of the linearized equations of motion is determined by a
random force η̃a

φ̃a(t,k) =
∫ t

−∞
dt1e

� t
t1

dt2�a(t2,k)
η̂a(t1,k), (8)

where â(t,k) ≡ −k2+ε(t)
�W (k)

and η̂a(t,k) ≡ �ηa(t,k)
�W (k)

is a
rescaled noise. This solution depends on the noise cor-
relator amplitude W̃ (k) and on the bifurcation parame-
ter ε(t). For simplicity we assume a linear time dependence
of this parameter i.e. ε(t) = t/τ , where 2τ is a quench
time. It seems that any realistic time dependence of the
parameter ε can be approximated by the oblique step func-
tion. We assume linear quench because for positive time
we do not leave the transition area. The calculation is
valid only up to a time when unstable modes start to ex-
ponentially grow, t ≤ te < τ . On the other hand we know
that the modulus of the parameter ε is proportional to
square of the mass of the scalar field. Therefore for times
proceeding transition, t < −τ , a larger modulus of the pa-
rameter ε is equivalent to more massive scalar fields. As
time t → −∞ the mass becomes infinite and therefore the
order parameter is stabilized in its vacuum position. This
behaviour agrees with initial conditions φa(t → −∞) = 0.

The power spectrum for this system is defined by the
equal-time correlator

〈φ̃a∗(t,k)φ̃b(t′,k′)〉t=t′ = P(t,k)δ(d)(k − k′)δab.

In d dimensions the density of zeros of the scalar field
is calculated with the use of the Liu-Mazenko-Halperin
formula [4]

N = Cd

(∫
Skm

ddkk2P(te,k)∫
Skm

ddkP(te,k)

) d
2

. (9)

A constant Cd depends on the number of dimensions i.e.

Cd =


1
π , for d = 1
1
2π , for d = 2
1

π2 , for d = 3.

The integration is restricted to the interior of the d
dimensional sphere of radius |km|. A cut-off |km| sepa-
rates stable and unstable modes of the system at the time
te =

√
W̃ τ , when unstable modes start to grow exponen-

tially [5]. The critical value of momentum |km| can be
identified from the linearized equations of motion whereas
the explosion time te from the power spectrum which in
the regime t � τk2 is given by

P(t,k)≈ 1
β

√
πτ

W̃ (|k|)
exp

(
t2

W̃ τ

)
exp

(
−2tk2

W̃

)
exp

(
τk4

W̃

)
·

Let us consider two opposite examples of the noise corre-
lator amplitude W̃ (k). In the first example an amplitude
is larger for larger momentum W̃ (k) = (1+L2k2)α, where
α is a positive real number. In the second example an am-
plitude W̃ (k) = a

eLn|k|n−1
is smaller for larger momentum.

Let us notice that in both cases the dependence of the am-
plitude W̃ on momentum is local i.e. is restricted only to
the interval 0 ≤ |k| ≤ |km| and therefore can approximate
quite large class of realistic functions P(te,k).
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I. In first example in the regime L2|km|2 
 1, τ ≤ L4

P(te,k) ≈
√

πτ

β
e−2

√
τk2

.

Therefore the density of vortices (d = 2) is

N ≈ 1
4π

1
τ

1
2
,

and the density of monopoles (d = 3) is

N ≈ 1
π2

√
3
4

1
τ

3
4
·

Both predictions agree with the scaling calculated for sys-
tems driven by white Gaussian noise.

II. In second example in the regime L|km| 
 1 cut-off

can be approximated by |km| → (
a

τLn

) 1
n+4 and the power

spectrum is the following:

P(te,k) ≈ 1
eβ

√
πτ

a
|k|n

2 L
n
2 . (10)

For the second class of models the density of zeros depends
on the quench time and the noise characteristic length as
well. In two spatial dimensions we have

N ≈ 1
2π

n + 4
n + 8

( a

τLn

) 2
n+4

.

In the three-dimensional case

N ≈ 1
π2

(
n + 6
n + 10

) 3
2 ( a

τLn

) 3
n+4

.

For n = 0 we recover the behaviour of the model driven
by Gaussian noise, because the amplitude of the noise cor-
relator then becomes a constant.

3 Remarks

The process of formation of topological defects, which is
the main subject of this paper, is the most interesting
aspect of their evolution. The number density of the
topological defects is associated with the dynamics of
the order parameter. As a consequence of critical slowing
down the correlation length diverges, perturbations of the
order parameter take longer to propagate over correlated
regions and therefore it takes longer to reach an equi-
librium. When the time remaining before transition equals

the equilibrium relaxation time the correlation length can
no longer adjust quickly enough to follow the changing
temperature of the system. The same time after a quench
the system regains capacity to respond to changes of exter-
nal parameters. The correlation length at that time sets
the characteristic length scale for the initial defect net-
work.

The result of this paper confirms this scenario for white
Gaussian noise (example II, model n = 0) and also for
reasonable class of the Markovian noises enumerated by
a positive real number (example I, α ∈ R+). However
there also exists noticeable class of processes (example II,
n > 0) for which the noise imprints its own length scale
on the number density of produced defects. The meaning
of this result is quite intuitive. If the noise produces the
zeros of the order parameter on distances smaller than
the correlation length then the dynamics of the system
prefer only those zeros which are separated at least by the
correlation length. However, if zeros are produced by the
noise on distances larger than the correlation length then
the number of produced defects have to be smaller than
that given by the correlation length.

Finally, it is worth stressing that so far the influence
of coloured noise on defect creation and diffusion has been
investigated only in case of nucleation of kinks via thermal
activation mechanism [6] while this paper aims to study
the production of topological defects during a dynamical
quench.

I am indebted to Professor Vladimir Gerdjikov and the other
organizers for their hospitality support during my stay in
Bansko.
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